Transplant Drama 2020 0h 43m 7.9
Tomato is considered a tender warm season crop but is actually a perennial plant, although it is cultivated as an annual. It is sensitive to frost and will not grow perpetually outdoors in most parts of the country. Most cultivated tomatoes require around 75 days from transplanting to first harvest and can be harvested for several weeks before production declines. Ideal temperatures for tomato growth are 70-85 degrees F during the day and 65-70 degrees F at night. Significantly higher or lower temperatures can have negative effects on fruit set and quality. The tomato is a self-pollinating plant and, outdoors, can be effectively pollinated by wind currents.
Transplant Drama 2020 0h 43m 7.9
For tomato production, proper tillage is crucial for adequate soil management and optimal yields. Land preparation should involve enough tillage operations to make the soil suitable for seedling or transplant establishment and to provide the best soil structure for root growth and development.
If there is an abundance of plants or plant residues on the soil surface, discing or mowing followed by discing is usually advised prior to moldboard plowing. This should be done 6 to 8 weeks ahead of planting to bury residue and allow it to decay. Immediately prior to plastic mulch installation or transplanting, perform final soil preparation and/or bedding with a rotary tiller, bedding disc or a double disc hiller in combination with a bedding press or leveling board. This provides a crustless, weed-free soil for the installation of plastic mulch or the establishment of transplants.
Tomatoes are usually transplanted into plastic mulch on raised beds. A raised bed will warm up more quickly in the spring and therefore will enhance earlier growth. Since tomatoes do poorly in excessively wet soils, a raised bed facilitates drainage and helps prevent waterlogging in low areas or in poorly drained soils. Raised beds are generally 3 to 8 inches high. Keep in mind, however, that tomatoes planted on raised beds may also require more irrigation during drought conditions.
As a general rule, when non-leguminous organic matter having a C:N ratio exceeding 30 to 1 is incorporated, a supplemental nitrogen application (usually 20 to 30 pounds of nitrogen per acre) prior to incorporation is recommended. The exact rate required will depend on the C:N ratio, soil type and amount of any residual nitrogen in the soil. Plow green manure crops under as deeply as possible with a moldboard plow 4 to 6 weeks prior to installing mulch or transplanting tomatoes.
Planting tomatoes in reduced tillage situations has been tried with variable results in different parts of the country. Often cover crops can be killed with a burn down herbicide. Then tomatoes are either transplanted directly into the cover, or a narrow strip is tilled and prepared for transplanting while leaving the residue between rows. While these residues can protect the fruit from direct contact with the soil, currently the impediments outweigh the benefits for large-scale commercial production. Leguminous covers can provide nitrogen to the crop and there are certainly soil conservation advantages.
Regardless of the species selected to be used as a windbreak, plant it early enough to be effective as a windbreak by the time tomatoes are transplanted. Establishment of a windbreak crop during the fall or early winter should ensure enough growth for an effective windbreak by spring tomato planting time. Wheat, oats or rye all make good windbreak crops. Windbreaks can be living or non-living. Tomato beds can be established between the windbreaks by tilling only in the bed area.
Seeding tomatoes directly into the field is not recommended due to the high cost of hybrid seed and the specific conditions required for adequate germination. Most tomatoes are transplanted to the field from greenhouse-grown plants. Direct seeding has other disadvantages: (1) Weed control is usually much more difficult with direct seeded than with transplanted tomatoes; (2) direct seeding requires especially well made seedbeds and specialized planting equipment to adequately control depth of planting and in-row spacing; (3) because of the shallow planting depth required for tomato seed, the field must be nearly level to prevent seeds from being washed away or covered too deeply with water-transported soil; and (4) spring harvest dates will be at least 2 to 3 weeks later for direct seeded tomatoes.
Typically, 5- to 6-week old tomato seedlings are transplanted into the field. As with most similar vegetable crops, container-grown transplants are preferred over bare root plants. Container grown transplants retain transplant growing medium (soil-substitute) attached to their roots after removal from the container (flat, tray). Many growers prefer this type transplant because (1) they are less subject to transplant shock, (2) usually require little, if any, replanting, (3) resume growth more quickly after transplanting, and (4) grow and produce more uniformly. Tomato plants produced in a 1-inch cell size tray are commonly used for transplanting. Many growers will use a 1.5-inch cell tray for transplant production in the fall when transplant stress is greater.
Tomato transplants should be hardened off before transplanting to the field. Hardening off is a technique used to slow plant growth prior to field setting so the plant can more successfully transition to the less favorable conditions in the field. This process involves decreasing water for a short period prior to taking the plants to the field. Research shows that reducing temperatures too drastically to harden tomato transplants can induce catfacing in the fruit.
Set transplants as soon as possible after removing from containers or after pulling. If it is necessary to hold tomato plants for several days before transplanting them, keep them cool (around 55-65 degrees F if possible) and do not allow the roots to dry out prior to transplanting. When setting plants, place them upright and place the roots 3 to 4 inches deep. Setting plants at least as deep as the cotyledons has been shown to enhance plant growth and early fruit production and maturity. Completely cover the root ball with soil to prevent wicking moisture from the soil. Tomatoes grow best if nighttime soil temperatures average higher than 60 degrees F.
At transplanting, apply an appropriate fertilizer starter solution (see Fertilizer Management section). After transplanting (especially within the first 2 weeks) it is very important that soil moisture be maintained so that plant roots can become well established.
Tomato production in Georgia is an expensive, labor intensive endeavor developed to produce high quality fresh market fruit. Because of the cost involved and because early market fruit command higher prices, growers exclusively use transplants to produce tomatoes. Tomato transplant production is a relatively easy but highly specialized function of production. Many growers have neither the greenhouse facilities nor the expertise to undertake transplant production; instead, they will rely on greenhouse growers to produce their transplants. For these growers to ensure a quality supply of transplants, they should contract early with their greenhouse grower to secure plants of the variet(ies) they wish to grow.
Growers should expect to plant between 3,600 and 5,800 plants per acre in a staked tomato operation, depending on the plant spacing. Expect to produce about 4,000 transplants per ounce of seed with approximately 3 ounces required to produce 10,000 seedlings. For example, to produce 10 acres of tomatoes with 5,800 plants per acre would require 58,000 transplants and would require about 18 ounces of seed (rounding up to 60,000 plants). Many seed companies no longer sell seed by weight but by count and will supply the germination rate as well. In such a case, the count and germination rate can be used to estimate the amount of seed to plant to produce the desired number of plants. For example, to produce 58,000 seedlings from seed with 90 percent germination would require 64,445 seed (58,000 divided by 0.90).
Tomato seedlings are usually produced in trays or flats that are divided into cells. Tomatoes require a cell size of approximately 1 inch square to produce a high quality, easily handled transplant. These trays or flats are available in a number of different configurations and sizes. They may be purchased as flats and inserts, polystyrene trays or, more recently, as one-piece rigid polyethylene plastic trays. Growers should make sure the trays or flats used can be handled with their transplanting equipment.
If charged media is used, there will be no need for fertilizer for the first 3 to 4 weeks of production. After that, use 150-200 ppm of a suitable water soluble fertilizer once per week (Table 3). With media that has no premixed fertilizer, begin fertilization as soon as the plants emerge. Growers may wish to use as little as 50 ppm of a suitable water soluble fertilizer with every irrigation. Tomatoes will require approximately 5 to 7 weeks to produce a good quality transplant. Cooler temperatures will slow growth, so greenhouse temperatures should be kept above 60 degrees F at night to accelerate growth.
A good quality transplant will be a sturdy, compact plant with a root mass that completely fills the cell. Water plants prior to transplanting. Tomatoes can be transplanted deeper than they grew in the greenhouse container and, in fact, it is desirable to do so. Roots will form on the stem that is below the ground.
Take care when transplanting into black plastic so the plants do not touch the plastic. The plastic can absorb enough heat to injure and kill plants. A drench of about 0.5 pint of a suitable starter solution should be applied to each plant. Examples of suitable solutions include mixing 3 pounds of 11-34-0 or 18-46-0 fertilizer in 50 gallons of water. Most transplanting equipment will have a tank to hold the solution and will automatically dispense the solution to each plant. 041b061a72